Multi-Level Active Prediction of Useful Image Annotations for Recognition

NeurIPS 2008 Sudheendra VijayanarasimhanKristen Grauman

We introduce a framework for actively learning visual categories from a mixture of weakly and strongly labeled image examples. We propose to allow the category-learner to strategically choose what annotations it receives---based on both the expected reduction in uncertainty as well as the relative costs of obtaining each annotation... (read more)

PDF Abstract


No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.