Multi-Modal Data Augmentation for End-to-End ASR

27 Mar 2018  ·  Adithya Renduchintala, Shuoyang Ding, Matthew Wiesner, Shinji Watanabe ·

We present a new end-to-end architecture for automatic speech recognition (ASR) that can be trained using \emph{symbolic} input in addition to the traditional acoustic input. This architecture utilizes two separate encoders: one for acoustic input and another for symbolic input, both sharing the attention and decoder parameters. We call this architecture a multi-modal data augmentation network (MMDA), as it can support multi-modal (acoustic and symbolic) input and enables seamless mixing of large text datasets with significantly smaller transcribed speech corpora during training. We study different ways of transforming large text corpora into a symbolic form suitable for training our MMDA network. Our best MMDA setup obtains small improvements on character error rate (CER), and as much as 7-10\% relative word error rate (WER) improvement over a baseline both with and without an external language model.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here