Multi-objective evolution for 3D RTS Micro

8 Mar 2018  ·  Sushil J. Louis, Siming Liu ·

We attack the problem of controlling teams of autonomous units during skirmishes in real-time strategy games. Earlier work had shown promise in evolving control algorithm parameters that lead to high performance team behaviors similar to those favored by good human players in real-time strategy games like Starcraft. This algorithm specifically encoded parameterized kiting and fleeing behaviors and the genetic algorithm evolved these parameter values. In this paper we investigate using influence maps and potential fields alone to compactly represent and control real-time team behavior for entities that can maneuver in three dimensions. A two-objective fitness function that maximizes damage done and minimizes damage taken guides our multi-objective evolutionary algorithm. Preliminary results indicate that evolving friend and enemy unit potential field parameters for distance, weapon characteristics, and entity health suffice to produce complex, high performing, three-dimensional, team tactics.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here