Multi-Objective Genetic Programming for Manifold Learning: Balancing Quality and Dimensionality

5 Jan 2020  ·  Andrew Lensen, Mengjie Zhang, Bing Xue ·

Manifold learning techniques have become increasingly valuable as data continues to grow in size. By discovering a lower-dimensional representation (embedding) of the structure of a dataset, manifold learning algorithms can substantially reduce the dimensionality of a dataset while preserving as much information as possible. However, state-of-the-art manifold learning algorithms are opaque in how they perform this transformation. Understanding the way in which the embedding relates to the original high-dimensional space is critical in exploratory data analysis. We previously proposed a Genetic Programming method that performed manifold learning by evolving mappings that are transparent and interpretable. This method required the dimensionality of the embedding to be known a priori, which makes it hard to use when little is known about a dataset. In this paper, we substantially extend our previous work, by introducing a multi-objective approach that automatically balances the competing objectives of manifold quality and dimensionality. Our proposed approach is competitive with a range of baseline and state-of-the-art manifold learning methods, while also providing a range (front) of solutions that give different trade-offs between quality and dimensionality. Furthermore, the learned models are shown to often be simple and efficient, utilising only a small number of features in an interpretable manner.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here