Multi-Output Convolution Spectral Mixture for Gaussian Processes

7 Aug 2018  ·  Kai Chen, Twan van Laarhoven, Perry Groot, Jinsong Chen, Elena Marchiori ·

Multi-output Gaussian processes (MOGPs) are an extension of Gaussian Processes (GPs) for predicting multiple output variables (also called channels, tasks) simultaneously. In this paper we use the convolution theorem to design a new kernel for MOGPs, by modeling cross channel dependencies through cross convolution of time and phase delayed components in the spectral domain. The resulting kernel is called Multi-Output Convolution Spectral Mixture (MOCSM) kernel. Results of extensive experiments on synthetic and real-life datasets demonstrate the advantages of the proposed kernel and its state of the art performance. MOCSM enjoys the desirable property to reduce to the well known Spectral Mixture (SM) kernel when a single-channel is considered. A comparison with the recently introduced Multi-Output Spectral Mixture kernel reveals that this is not the case for the latter kernel, which contains quadratic terms that generate undesirable scale effects when the spectral densities of different channels are either very close or very far from each other in the frequency domain.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods