Learning Multi-Robot Decentralized Macro-Action-Based Policies via a Centralized Q-Net

19 Sep 2019  ·  Yuchen Xiao, Joshua Hoffman, Tian Xia, Christopher Amato ·

In many real-world multi-robot tasks, high-quality solutions often require a team of robots to perform asynchronous actions under decentralized control. Decentralized multi-agent reinforcement learning methods have difficulty learning decentralized policies because of the environment appearing to be non-stationary due to other agents also learning at the same time. In this paper, we address this challenge by proposing a macro-action-based decentralized multi-agent double deep recurrent Q-net (MacDec-MADDRQN) which trains each decentralized Q-net using a centralized Q-net for action selection. A generalized version of MacDec-MADDRQN with two separate training environments, called Parallel-MacDec-MADDRQN, is also presented to leverage either centralized or decentralized exploration. The advantages and the practical nature of our methods are demonstrated by achieving near-centralized results in simulation and having real robots accomplish a warehouse tool delivery task in an efficient way.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here