Multi-sensor Joint Adaptive Birth Sampler for Labeled Random Finite Set Tracking

11 Aug 2021  ·  Anthony Trezza, Donald J. Bucci Jr., Pramod K. Varshney ·

This paper provides a scalable, multi-sensor measurement adaptive track initiation technique for labeled random finite set filters. A naive construction of the multi-sensor measurement adaptive birth set distribution leads to an exponential number of newborn components in the number of sensors. A truncation criterion is established for a labeled multi-Bernoulli random finite set birth density. The proposed truncation criterion is shown to have a bounded L1 error in the generalized labeled multi-Bernoulli posterior density. This criterion is used to construct a Gibbs sampler that produces a truncated measurement-generated labeled multi-Bernoulli birth distribution with quadratic complexity in the number of sensors. A closed-form solution of the conditional sampling distribution assuming linear Gaussian likelihoods is provided, alongside an approximate solution using Monte Carlo importance sampling. Multiple simulation results are provided to verify the efficacy of the truncation criterion, as well as the reduction in complexity.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here