Multi-Step Dyna Planning for Policy Evaluation and Control

We extend Dyna planning architecture for policy evaluation and control in two significant aspects. First, we introduce a multi-step Dyna planning that projects the simulated state/feature many steps into the future... Our multi-step Dyna is based on a multi-step model, which we call the {\em $\lambda$-model}. The $\lambda$-model interpolates between the one-step model and an infinite-step model, and can be learned efficiently online. Second, we use for Dyna control a dynamic multi-step model that is able to predict the results of a sequence of greedy actions and track the optimal policy in the long run. Experimental results show that Dyna using the multi-step model evaluates a policy faster than using single-step models; Dyna control algorithms using the dynamic tracking model are much faster than model-free algorithms; further, multi-step Dyna control algorithms enable the policy and value function to converge much faster to their optima than single-step Dyna algorithms. read more

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here