Multi-Task Learning for Semantic Parsing with Cross-Domain Sketch

Semantic parsing which maps a natural language sentence into a formal machine-readable representation of its meaning, is highly constrained by the limited annotated training data. Inspired by the idea of coarse-to-fine, we propose a general-to-detailed neural network(GDNN) by incorporating cross-domain sketch(CDS) among utterances and their logic forms... (read more)

PDF Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet