Multi-task Temporal Convolutional Network for Predicting Water Quality Sensor

Predicting the trend of water quality is essential in environmental management decision support systems. Despite various data-driven models in water quality prediction, most studies focus on predicting a single water quality variable. When multiple water quality variables need to be estimated, preparing several data-driven models may require unaffordable computing resources. Also, the changing patterns of several water quality variables can only be revealed by processing long term historical observations, which is not well supported by conventional data-driven models. In this paper, we propose a multi-task temporal convolution network (MTCN) for predicting multiple water quality variables. The temporal convolution offers one the capability to explore the temporal dependencies among a remarkably long historical period. Furthermore, instead of providing predictions for only one water quality variable, the MTCN is designed to predict multiple water quality variables simultaneously. Data collected from the Burnett River, Queensland is used to evaluate the MTCN. Compared to training a set of single-task TCNs for each variable separately, the proposed MTCN achieves the best RMSE scores in predicting both temperature and DO in the following 48 time steps but only requires 53% of the total training time of the TCN. Therefore, the MTCN is an encouraging approach for water quality management by processing a large amount of sensor data.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods