Multi-timescale memory dynamics in a reinforcement learning network with attention-gated memory

28 Dec 2017  ·  Marco Martinolli, Wulfram Gerstner, Aditya Gilra ·

Learning and memory are intertwined in our brain and their relationship is at the core of several recent neural network models. In particular, the Attention-Gated MEmory Tagging model (AuGMEnT) is a reinforcement learning network with an emphasis on biological plausibility of memory dynamics and learning. We find that the AuGMEnT network does not solve some hierarchical tasks, where higher-level stimuli have to be maintained over a long time, while lower-level stimuli need to be remembered and forgotten over a shorter timescale. To overcome this limitation, we introduce hybrid AuGMEnT, with leaky or short-timescale and non-leaky or long-timescale units in memory, that allow to exchange lower-level information while maintaining higher-level one, thus solving both hierarchical and distractor tasks.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here