Multi-variable LSTM neural network for autoregressive exogenous model

17 Jun 2018  ·  Tian Guo, Tao Lin ·

In this paper, we propose multi-variable LSTM capable of accurate forecasting and variable importance interpretation for time series with exogenous variables. Current attention mechanism in recurrent neural networks mostly focuses on the temporal aspect of data and falls short of characterizing variable importance. To this end, the multi-variable LSTM equipped with tensorized hidden states is developed to learn hidden states for individual variables, which give rise to our mixture temporal and variable attention. Based on such attention mechanism, we infer and quantify variable importance. Extensive experiments using real datasets with Granger-causality test and the synthetic dataset with ground truth demonstrate the prediction performance and interpretability of multi-variable LSTM in comparison to a variety of baselines. It exhibits the prospect of multi-variable LSTM as an end-to-end framework for both forecasting and knowledge discovery.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods