Multi-view Information Bottleneck Without Variational Approximation

22 Apr 2022  ·  Qi Zhang, Shujian Yu, Jingmin Xin, Badong Chen ·

By "intelligently" fusing the complementary information across different views, multi-view learning is able to improve the performance of classification tasks. In this work, we extend the information bottleneck principle to a supervised multi-view learning scenario and use the recently proposed matrix-based R{\'e}nyi's $\alpha$-order entropy functional to optimize the resulting objective directly, without the necessity of variational approximation or adversarial training. Empirical results in both synthetic and real-world datasets suggest that our method enjoys improved robustness to noise and redundant information in each view, especially given limited training samples. Code is available at~\url{https://github.com/archy666/MEIB}.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here