Multidimensional sound propagation in 3D high-order topological sonic insulator

28 Jan 2020  ·  Fei Meng, Yafeng Chen, Weibai Li, Baohua Jia, Xiaodong Huang ·

High-order topological insulators (TIs) develop the conventional bulk-boundary correspondence theory and rise the interest in searching innovative topological materials. To realize a high-order TI with a wide passband of 1D and 2D transportation modes, we design non-trivial and trivial 3D sonic crystals whose combination mimics the Su-Schrieffer-Heeger model. The high-order topological boundary states can be found at the interfaces, including 0D corner state, 1D hinge state, and 2D surface state. The fabricated sample with the bent two-dimensional and one-dimensional acoustic channels exhibits the multidimensional sound propagation in space, and also verifies the transition between the complete band gap, hinge states, and surface states within the bulk band gap. Among them, the bandwidth of the single-mode hinge state achieves a large relative bandwidth 9.1%, in which sound transports one-dimensionally without significant leak into the surfaces or the bulk. The high-order topological states in the study pave the way for multidimensional sound manipulation in space.

PDF Abstract
No code implementations yet. Submit your code now

Categories


Applied Physics Materials Science