Paper

Multiple Instance Learning for Malware Classification

This work addresses classification of unknown binaries executed in sandbox by modeling their interaction with system resources (files, mutexes, registry keys and communication with servers over the network) and error messages provided by the operating system, using vocabulary-based method from the multiple instance learning paradigm. It introduces similarities suitable for individual resource types that combined with an approximative clustering method efficiently group the system resources and define features directly from data... (read more)

Results in Papers With Code
(↓ scroll down to see all results)