Multiple Kernel Learning for Brain-Computer Interfacing

22 Oct 2013Wojciech SamekAlexander BinderKlaus-Robert Müller

Combining information from different sources is a common way to improve classification accuracy in Brain-Computer Interfacing (BCI). For instance, in small sample settings it is useful to integrate data from other subjects or sessions in order to improve the estimation quality of the spatial filters or the classifier... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet