Multiple VLAD encoding of CNNs for image classification

30 Jun 2017  ·  Qing Li, Qiang Peng, Chuan Yan ·

Despite the effectiveness of convolutional neural networks (CNNs) especially in image classification tasks, the effect of convolution features on learned representations is still limited. It mostly focuses on the salient object of the images, but ignores the variation information on clutter and local... In this paper, we propose a special framework, which is the multiple VLAD encoding method with the CNNs features for image classification. Furthermore, in order to improve the performance of the VLAD coding method, we explore the multiplicity of VLAD encoding with the extension of three kinds of encoding algorithms, which are the VLAD-SA method, the VLAD-LSA and the VLAD-LLC method. Finally, we equip the spatial pyramid patch (SPM) on VLAD encoding to add the spatial information of CNNs feature. In particular, the power of SPM leads our framework to yield better performance compared to the existing method. read more

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods