Multiscale Principle of Relevant Information for Hyperspectral Image Classification

13 Jul 2019  ·  Yantao Wei, Shujian Yu, Luis Sanchez Giraldo, Jose C. Principe ·

This paper proposes a novel architecture, termed multiscale principle of relevant information (MPRI), to learn discriminative spectral-spatial features for hyperspectral image (HSI) classification. MPRI inherits the merits of the principle of relevant information (PRI) to effectively extract multiscale information embedded in the given data, and also takes advantage of the multilayer structure to learn representations in a coarse-to-fine manner. Specifically, MPRI performs spectral-spatial pixel characterization (using PRI) and feature dimensionality reduction (using regularized linear discriminant analysis) iteratively and successively. Extensive experiments on three benchmark data sets demonstrate that MPRI outperforms existing state-of-the-art methods (including deep learning based ones) qualitatively and quantitatively, especially in the scenario of limited training samples. Code of MPRI is available at \url{}.

PDF Abstract


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here