Multiscale Random Fields with Application to Contour Grouping

We introduce a new interpretation of multiscale random fields (MSRFs) that admits efficient optimization in the framework of regular (single level) random fields (RFs). It is based on a new operator, called append, that combines sets of random variables (RVs) to single RVs. We assume that a MSRF can be decomposed into disjoint trees that link RVs at different pyramid levels. The append operator is then applied to map RVs in each tree structure to a single RV. We demonstrate the usefulness of the proposed approach on a challenging task involving grouping contours of target shapes in images. MSRFs provide a natural representation of multiscale contour models, which are needed in order to cope with unstable contour decompositions. The append operator allows us to find optimal image labels using the classical framework of relaxation labeling, Alternative methods like Markov Chain Monte Carlo (MCMC) could also be used.

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here