Multiscale Residual Mixture of PCA: Dynamic Dictionaries for Optimal Basis Learning

18 Jul 2017  ·  Randall Balestriero ·

In this paper we are interested in the problem of learning an over-complete basis and a methodology such that the reconstruction or inverse problem does not need optimization. We analyze the optimality of the presented approaches, their link to popular already known techniques s.a... Artificial Neural Networks,k-means or Oja's learning rule. Finally, we will see that one approach to reach the optimal dictionary is a factorial and hierarchical approach. The derived approach lead to a formulation of a Deep Oja Network. We present results on different tasks and present the resulting very efficient learning algorithm which brings a new vision on the training of deep nets. Finally, the theoretical work shows that deep frameworks are one way to efficiently have over-complete (combinatorially large) dictionary yet allowing easy reconstruction. We thus present the Deep Residual Oja Network (DRON). We demonstrate that a recursive deep approach working on the residuals allow exponential decrease of the error w.r.t. the depth. read more

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here