MultiTalk: A Highly-Branching Dialog Testbed for Diverse Conversations

2 Feb 2021  ·  Yao Dou, Maxwell Forbes, Ari Holtzman, Yejin Choi ·

We study conversational dialog in which there are many possible responses to a given history. We present the MultiTalk Dataset, a corpus of over 320,000 sentences of written conversational dialog that balances a high branching factor (10) with several conversation turns (6) through selective branch continuation. We make multiple contributions to study dialog generation in the highly branching setting. In order to evaluate a diverse set of generations, we propose a simple scoring algorithm, based on bipartite graph matching, to optimally incorporate a set of diverse references. We study multiple language generation tasks at different levels of predictive conversation depth, using textual attributes induced automatically from pretrained classifiers. Our culminating task is a challenging theory of mind problem, a controllable generation task which requires reasoning about the expected reaction of the listener.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here