Multitask Online Mirror Descent

We introduce and analyze MT-OMD, a multitask generalization of Online Mirror Descent (OMD) which operates by sharing updates between tasks. We prove that the regret of MT-OMD is of order $\sqrt{1 + \sigma^2(N-1)}\sqrt{T}$, where $\sigma^2$ is the task variance according to the geometry induced by the regularizer, $N$ is the number of tasks, and $T$ is the time horizon. Whenever tasks are similar, that is $\sigma^2 \le 1$, our method improves upon the $\sqrt{NT}$ bound obtained by running independent OMDs on each task. We further provide a matching lower bound, and show that our multitask extensions of Online Gradient Descent and Exponentiated Gradient, two major instances of OMD, enjoy closed-form updates, making them easy to use in practice. Finally, we present experiments which support our theoretical findings.

PDF Abstract NeurIPS 2021 PDF NeurIPS 2021 Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here