Multivariate Convolutional Sparse Coding for Electromagnetic Brain Signals

NeurIPS 2018 Tom Dupré La TourThomas MoreauMainak JasAlexandre Gramfort

Frequency-specific patterns of neural activity are traditionally interpreted as sustained rhythmic oscillations, and related to cognitive mechanisms such as attention, high level visual processing or motor control. While alpha waves (8-12 Hz) are known to closely resemble short sinusoids, and thus are revealed by Fourier analysis or wavelet transforms, there is an evolving debate that electromagnetic neural signals are composed of more complex waveforms that cannot be analyzed by linear filters and traditional signal representations... (read more)

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet