MultiVec: a Multilingual and Multilevel Representation Learning Toolkit for NLP

We present MultiVec, a new toolkit for computing continuous representations for text at different granularity levels (word-level or sequences of words). MultiVec includes word2vec{'}s features, paragraph vector (batch and online) and bivec for bilingual distributed representations. MultiVec also includes different distance measures between words and sequences of words. The toolkit is written in C++ and is aimed at being fast (in the same order of magnitude as word2vec), easy to use, and easy to extend. It has been evaluated on several NLP tasks: the analogical reasoning task, sentiment analysis, and crosslingual document classification.

PDF Abstract LREC 2016 PDF LREC 2016 Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here