MUSE: Multi-Scale Temporal Features Evolution for Knowledge Tracing

30 Jan 2021  ·  Chengwei Zhang, Yangzhou Jiang, Wei zhang, Chengyu Gu ·

Transformer based knowledge tracing model is an extensively studied problem in the field of computer-aided education. By integrating temporal features into the encoder-decoder structure, transformers can processes the exercise information and student response information in a natural way. However, current state-of-the-art transformer-based variants still share two limitations. First, extremely long temporal features cannot well handled as the complexity of self-attention mechanism is O(n2). Second, existing approaches track the knowledge drifts under fixed a window size, without considering different temporal-ranges. To conquer these problems, we propose MUSE, which is equipped with multi-scale temporal sensor unit, that takes either local or global temporal features into consideration. The proposed model is capable to capture the dynamic changes in users knowledge states at different temporal-ranges, and provides an efficient and powerful way to combine local and global features to make predictions. Our method won the 5-th place over 3,395 teams in the Riiid AIEd Challenge 2020.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here