MUSO: Achieving Exact Machine Unlearning in Over-Parameterized Regimes

11 Oct 2024  ·  Ruikai Yang, Mingzhen He, Zhengbao He, Youmei Qiu, Xiaolin Huang ·

Machine unlearning (MU) is to make a well-trained model behave as if it had never been trained on specific data. In today's over-parameterized models, dominated by neural networks, a common approach is to manually relabel data and fine-tune the well-trained model. It can approximate the MU model in the output space, but the question remains whether it can achieve exact MU, i.e., in the parameter space. We answer this question by employing random feature techniques to construct an analytical framework. Under the premise of model optimization via stochastic gradient descent, we theoretically demonstrated that over-parameterized linear models can achieve exact MU through relabeling specific data. We also extend this work to real-world nonlinear networks and propose an alternating optimization algorithm that unifies the tasks of unlearning and relabeling. The algorithm's effectiveness, confirmed through numerical experiments, highlights its superior performance in unlearning across various scenarios compared to current state-of-the-art methods, particularly excelling over similar relabeling-based MU approaches.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here