MvP: Multi-view Prompting Improves Aspect Sentiment Tuple Prediction

22 May 2023  ยท  Zhibin Gou, Qingyan Guo, Yujiu Yang ยท

Generative methods greatly promote aspect-based sentiment analysis via generating a sequence of sentiment elements in a specified format. However, existing studies usually predict sentiment elements in a fixed order, which ignores the effect of the interdependence of the elements in a sentiment tuple and the diversity of language expression on the results. In this work, we propose Multi-view Prompting (MvP) that aggregates sentiment elements generated in different orders, leveraging the intuition of human-like problem-solving processes from different views. Specifically, MvP introduces element order prompts to guide the language model to generate multiple sentiment tuples, each with a different element order, and then selects the most reasonable tuples by voting. MvP can naturally model multi-view and multi-task as permutations and combinations of elements, respectively, outperforming previous task-specific designed methods on multiple ABSA tasks with a single model. Extensive experiments show that MvP significantly advances the state-of-the-art performance on 10 datasets of 4 benchmark tasks, and performs quite effectively in low-resource settings. Detailed evaluation verified the effectiveness, flexibility, and cross-task transferability of MvP.

PDF Abstract
Task Dataset Model Metric Name Metric Value Global Rank Uses Extra
Training Data
Benchmark
Aspect-Based Sentiment Analysis (ABSA) ACOS ChatGPT (gpt-3.5-turbo, zero-shot) F1 (Restaurant) 27.11 # 9
Aspect-Based Sentiment Analysis (ABSA) ACOS MvP (muilti-task) F1 (Laptop) 43.84 # 2
F1 (Restaurant) 60.36 # 4
Aspect-Based Sentiment Analysis (ABSA) ACOS MvP F1 (Laptop) 43.92 # 1
F1 (Restaurant) 61.54 # 1
Aspect-Based Sentiment Analysis (ABSA) ACOS ChatGPT (gpt-3.5-turbo, few-shot) F1 (Restaurant) 37.71 # 7
Aspect-Based Sentiment Analysis (ABSA) ASQP ChatGPT (gpt-3.5-turbo, few-shot) F1 (R15) 34.27 # 9
Aspect-Based Sentiment Analysis (ABSA) ASQP MvP F1 (R15) 51.04 # 2
F1 (R16) 60.39 # 2
Aspect-Based Sentiment Analysis (ABSA) ASQP MvP (multi-task) F1 (R15) 52.21 # 1
F1 (R16) 58.94 # 4
Aspect-Based Sentiment Analysis (ABSA) ASQP ChatGPT (gpt-3.5-turbo, zero-shot) F1 (R15) 22.87 # 10
Aspect-Based Sentiment Analysis (ABSA) ASTE MvP (multi-task) F1 (L14) 65.30 # 1
F1(R14) 76.30 # 1
F1 (R15) 69.44 # 1
F1 (R16) 73.10 # 3
Aspect-Based Sentiment Analysis (ABSA) ASTE ChatGPT (gpt-3.5-turbo, zero-shot) F1 (L14) 36.05 # 11
Aspect-Based Sentiment Analysis (ABSA) ASTE ChatGPT (gpt-3.5-turbo, few-shot) F1 (L14) 38.12 # 10
Aspect-Based Sentiment Analysis (ABSA) ASTE MvP F1 (L14) 63.33 # 3
F1(R14) 74.05 # 3
F1 (R15) 65.89 # 2
F1 (R16) 73.48 # 2
Aspect-Based Sentiment Analysis (ABSA) TASD MvP (multi-task) F1 (R15) 64.74 # 1
F1 (R16) 70.18 # 5
Aspect-Based Sentiment Analysis (ABSA) TASD MvP F1 (R15) 64.53 # 2
F1 (R16) 72.76 # 1
Aspect-Based Sentiment Analysis (ABSA) TASD ChatGPT (gpt-3.5-turbo, few-shot) F1 (R16) 46.51 # 8
Aspect-Based Sentiment Analysis (ABSA) TASD ChatGPT (gpt-3.5-turbo, zero-shot) F1 (R16) 34.08 # 9

Methods


No methods listed for this paper. Add relevant methods here