N-Best Hypotheses Reranking for Text-To-SQL Systems

19 Oct 2022  ·  Lu Zeng, Sree Hari Krishnan Parthasarathi, Dilek Hakkani-Tur ·

Text-to-SQL task maps natural language utterances to structured queries that can be issued to a database. State-of-the-art (SOTA) systems rely on finetuning large, pre-trained language models in conjunction with constrained decoding applying a SQL parser. On the well established Spider dataset, we begin with Oracle studies: specifically, choosing an Oracle hypothesis from a SOTA model's 10-best list, yields a $7.7\%$ absolute improvement in both exact match (EM) and execution (EX) accuracy, showing significant potential improvements with reranking. Identifying coherence and correctness as reranking approaches, we design a model generating a query plan and propose a heuristic schema linking algorithm. Combining both approaches, with T5-Large, we obtain a consistent $1\% $ improvement in EM accuracy, and a $~2.5\%$ improvement in EX, establishing a new SOTA for this task. Our comprehensive error studies on DEV data show the underlying difficulty in making progress on this task.

PDF Abstract
No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here