Nano-Material Configuration Design with Deep Surrogate Langevin Dynamics

We consider the problem of optimizing by sampling under multiple black-box constraints in nano-material design. We leverage the posterior regularization framework and show that the constraint satisfaction problem can be formulated as sampling from a Gibbs distribution. The main challenges come from the black-box nature of the constraints obtained by solving complex and expensive PDEs. To circumvent these issues, we introduce Surrogate-based Constrained Langevin dynamics for black-box sampling. We devise two approaches for learning surrogate gradients of the black-box functions: first, by using zero-order gradients approximations; and second, by approximating the Langevin gradients with deep neural networks. We prove the convergence of both approaches when the target distribution is $\log$-concave and smooth. We also show the effectiveness of our approaches over Bayesian optimization in designing optimal nano-porous material configurations that achieve low thermal conductivity and reasonable mechanical stability.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here