NASIB: Neural Architecture Search withIn Budget

19 Oct 2019Abhishek SinghAnubhav GargJinan ZhouShiv Ram DubeyDebo Dutta

Neural Architecture Search (NAS) represents a class of methods to generate the optimal neural network architecture and typically iterate over candidate architectures till convergence over some particular metric like validation loss. They are constrained by the available computation resources, especially in enterprise environments... (read more)

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet