Native Banach spaces for splines and variational inverse problems

24 Apr 2019  ·  Michael Unser, Julien Fageot ·

We propose a systematic construction of native Banach spaces for general spline-admissible operators ${\rm L}$. In short, the native space for ${\rm L}$ and the (dual) norm $\|\cdot\|_{\mathcal{X}'}$ is the largest space of functions $f: \mathbb{R}^d \to \mathbb{R}$ such that $\|{\rm L} f\|_{\mathcal{X}'}<\infty$, subject to the constraint that the growth-restricted null space of ${\rm L}$be finite-dimensional. This space, denoted by $\mathcal{X}'_{\rm L}$, is specified as the dual of the pre-native space $\mathcal{X}_{\rm L}$, which is itself obtained through a suitable completion process. The main difference with prior constructions (e.g., reproducing kernel Hilbert spaces) is that our approach involves test functions rather than sums of atoms (e.g, kernels), which makes it applicable to a much broader class of norms, including total variation. Under specific admissibility and compatibility hypotheses, we lay out the direct-sum topology of $\mathcal{X}_{\rm L}$ and $\mathcal{X}'_{\rm L}$, and identify the whole family of equivalent norms. Our construction ensures that the native space and its pre-dual are endowed with a fundamental Schwartz-Banach property. In practical terms, this means that $\mathcal{X}'_{\rm L}$ is rich enough to reproduce any function with an arbitrary degree of precision.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here