NATTACK: A STRONG AND UNIVERSAL GAUSSIAN BLACK-BOX ADVERSARIAL ATTACK

ICLR 2019 Yandong LiLijun LiLiqiang WangTong ZhangBoqing Gong

Recent works find that DNNs are vulnerable to adversarial examples, whose changes from the benign ones are imperceptible and yet lead DNNs to make wrong predictions. One can find various adversarial examples for the same input to a DNN using different attack methods... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet