Natural Language Generation with Neural Variational Models

27 Aug 2018Hareesh Bahuleyan

In this thesis, we explore the use of deep neural networks for generation of natural language. Specifically, we implement two sequence-to-sequence neural variational models - variational autoencoders (VAE) and variational encoder-decoders (VED)... (read more)

PDF Abstract


No code implementations yet. Submit your code now

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet