Neural dynamics under active inference: plausibility and efficiency of information processing

22 Jan 2020  ·  Lancelot Da Costa, Thomas Parr, Biswa Sengupta, Karl Friston ·

Active inference is a normative framework for explaining behaviour under the free energy principle -- a theory of self-organisation originating in neuroscience. It specifies neuronal dynamics for state-estimation in terms of a descent on (variational) free energy -- a measure of the fit between an internal (generative) model and sensory observations. The free energy gradient is a prediction error -- plausibly encoded in the average membrane potentials of neuronal populations. Conversely, the expected probability of a state can be expressed in terms of neuronal firing rates. We show that this is consistent with current models of neuronal dynamics and establish face validity by synthesising plausible electrophysiological responses. We then show that these neuronal dynamics approximate natural gradient descent, a well-known optimisation algorithm from information geometry that follows the steepest descent of the objective in information space. We compare the information length of belief updating in both schemes, a measure of the distance traveled in information space that has a direct interpretation in terms of metabolic cost. We show that neural dynamics under active inference are metabolically efficient and suggest that neural representations in biological agents may evolve by approximating steepest descent in information space towards the point of optimal inference.

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here