Navigating Robot Swarms Using Collective Intelligence Learned from Golden Shiner Fish

30 Jun 2014  ·  Grace Gao ·

Navigating networked robot swarms often requires knowing where to go, sensing the environment, and path-planning based on the destination and barriers in the environment. Such a process is computationally intensive. Moreover, as the network scales up, the computational load increases quadratically, or even exponentially. Unlike these man-made systems, most biological systems scale linearly in complexity. Furthermore, the scale of a biological swarm can even enable collective intelligence. One example comes from observations of golden shiner fish. Golden shiners naturally prefer darkness and school together. Each individual golden shiner does not know where the darkness is. Neither does it sense the light gradients in the environment. However, by moving together as a school, they always end up in the shady area. We apply such collective intelligence learned from golden shiner fish to navigating robot swarms. Each individual robot's dynamic is based on the gold shiners' movement strategy---a random walk with its speed modulated by the light intensity and its direction affected by its neighbors. The theoretical analysis and simulation results show that our method 1) promises to navigate a robot swarm with little situational knowledge, 2) simplifies control and decision-making for each individual robot, 3) requires minimal or even no information exchange within the swarm, and 4) is highly distributed, adaptive, and robust.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods