Near-Optimal Smoothing of Structured Conditional Probability Matrices

Utilizing the structure of a probabilistic model can significantly increase its learning speed. Motivated by several recent applications, in particular bigram models in language processing, we consider learning low-rank conditional probability matrices under expected KL-risk. This choice makes smoothing, that is the careful handling of low-probability elements, paramount. We derive an iterative algorithm that extends classical non-negative matrix factorization to naturally incorporate additive smoothing and prove that it converges to the stationary points of a penalized empirical risk. We then derive sample-complexity bounds for the global minimizer of the penalized risk and show that it is within a small factor of the optimal sample complexity. This framework generalizes to more sophisticated smoothing techniques, including absolute-discounting.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here