Nearly Optimal Adaptive Procedure with Change Detection for Piecewise-Stationary Bandit

11 Feb 2018  ·  Yang Cao, Zheng Wen, Branislav Kveton, Yao Xie ·

Multi-armed bandit (MAB) is a class of online learning problems where a learning agent aims to maximize its expected cumulative reward while repeatedly selecting to pull arms with unknown reward distributions. We consider a scenario where the reward distributions may change in a piecewise-stationary fashion at unknown time steps... We show that by incorporating a simple change-detection component with classic UCB algorithms to detect and adapt to changes, our so-called M-UCB algorithm can achieve nearly optimal regret bound on the order of $O(\sqrt{MKT\log T})$, where $T$ is the number of time steps, $K$ is the number of arms, and $M$ is the number of stationary segments. Comparison with the best available lower bound shows that our M-UCB is nearly optimal in $T$ up to a logarithmic factor. We also compare M-UCB with the state-of-the-art algorithms in numerical experiments using a public Yahoo! dataset to demonstrate its superior performance. read more

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here