NeRF-RPN: A general framework for object detection in NeRFs

21 Nov 2022  ·  Benran Hu, Junkai Huang, Yichen Liu, Yu-Wing Tai, Chi-Keung Tang ·

This paper presents the first significant object detection framework, NeRF-RPN, which directly operates on NeRF. Given a pre-trained NeRF model, NeRF-RPN aims to detect all bounding boxes of objects in a scene. By exploiting a novel voxel representation that incorporates multi-scale 3D neural volumetric features, we demonstrate it is possible to regress the 3D bounding boxes of objects in NeRF directly without rendering the NeRF at any viewpoint. NeRF-RPN is a general framework and can be applied to detect objects without class labels. We experimented the NeRF-RPN with various backbone architectures, RPN head designs and loss functions. All of them can be trained in an end-to-end manner to estimate high quality 3D bounding boxes. To facilitate future research in object detection for NeRF, we built a new benchmark dataset which consists of both synthetic and real-world data with careful labeling and clean up. Please click https://youtu.be/M8_4Ih1CJjE for visualizing the 3D region proposals by our NeRF-RPN. Code and dataset will be made available.

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods