Nestrov's Acceleration For Second Order Method

19 May 2017  ·  Haishan Ye, Zhihua Zhang ·

Optimization plays a key role in machine learning. Recently, stochastic second-order methods have attracted much attention due to their low computational cost in each iteration. However, these algorithms might perform poorly especially if it is hard to approximate the Hessian well and efficiently. As far as we know, there is no effective way to handle this problem. In this paper, we resort to Nestrov's acceleration technique to improve the convergence performance of a class of second-order methods called approximate Newton. We give a theoretical analysis that Nestrov's acceleration technique can improve the convergence performance for approximate Newton just like for first-order methods. We accordingly propose an accelerated regularized sub-sampled Newton. Our accelerated algorithm performs much better than the original regularized sub-sampled Newton in experiments, which validates our theory empirically. Besides, the accelerated regularized sub-sampled Newton has good performance comparable to or even better than state-of-art algorithms.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here