NESTT: A Nonconvex Primal-Dual Splitting Method for Distributed and Stochastic Optimization

We study a stochastic and distributed algorithm for nonconvex problems whose objective consists of a sum of $N$ nonconvex $L_i/N$-smooth functions, plus a nonsmooth regularizer. The proposed NonconvEx primal-dual SpliTTing (NESTT) algorithm splits the problem into $N$ subproblems, and utilizes an augmented Lagrangian based primal-dual scheme to solve it in a distributed and stochastic manner... (read more)

PDF Abstract NeurIPS 2016 PDF NeurIPS 2016 Abstract
No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet