Network Modeling and Pathway Inference from Incomplete Data ("PathInf")

1 Oct 2018  ·  Xiang Li, Qitian Chen, Xing Wang, Ning Guo, Nan Wu, Quanzheng Li ·

In this work, we developed a network inference method from incomplete data ("PathInf") , as massive and non-uniformly distributed missing values is a common challenge in practical problems. PathInf is a two-stages inference model... In the first stage, it applies a data summarization model based on maximum likelihood to deal with the massive distributed missing values by transforming the observation-wise items in the data into state matrix. In the second stage, transition pattern (i.e. pathway) among variables is inferred as a graph inference problem solved by greedy algorithm with constraints. The proposed method was validated and compared with the state-of-art Bayesian network method on the simulation data, and shown consistently superior performance. By applying the PathInf on the lymph vascular metastasis data, we obtained the holistic pathways of the lymph node metastasis with novel discoveries on the jumping metastasis among nodes that are physically apart. The discovery indicates the possible presence of sentinel node groups in the lung lymph nodes which have been previously speculated yet never found. The pathway map can also improve the current dissection examination protocol for better individualized treatment planning, for higher diagnostic accuracy and reducing the patients trauma. read more

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here