Network Pruning for Low-Rank Binary Index

25 Sep 2019  ·  Dongsoo Lee, Se Jung Kwon, Byeongwook Kim, Parichay Kapoor, Gu-Yeon Wei ·

Pruning is an efficient model compression technique to remove redundancy in the connectivity of deep neural networks (DNNs). A critical problem to represent sparse matrices after pruning is that if fewer bits are used for quantization and pruning rate is enhanced, then the amount of index becomes relatively larger. Moreover, an irregular index form leads to low parallelism for convolutions and matrix multiplications. In this paper, we propose a new network pruning technique that generates a low-rank binary index matrix to compress index data significantly. Specifically, the proposed compression method finds a particular fine-grained pruning mask that can be decomposed into two binary matrices while decompressing index data is performed by simple binary matrix multiplication. We also propose a tile-based factorization technique that not only lowers memory requirements but also enhances compression ratio. Various DNN models (including conv layers and LSTM layers) can be pruned with much fewer indices compared to previous sparse matrix formats while maintaining the same pruning rate.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here