Neural Affine Grayscale Image Denoising

17 Sep 2017  ·  Sungmin Cha, Taesup Moon ·

We propose a new grayscale image denoiser, dubbed as Neural Affine Image Denoiser (Neural AIDE), which utilizes neural network in a novel way. Unlike other neural network based image denoising methods, which typically apply simple supervised learning to learn a mapping from a noisy patch to a clean patch, we formulate to train a neural network to learn an \emph{affine} mapping that gets applied to a noisy pixel, based on its context. Our formulation enables both supervised training of the network from the labeled training dataset and adaptive fine-tuning of the network parameters using the given noisy image subject to denoising. The key tool for devising Neural AIDE is to devise an estimated loss function of the MSE of the affine mapping, solely based on the noisy data. As a result, our algorithm can outperform most of the recent state-of-the-art methods in the standard benchmark datasets. Moreover, our fine-tuning method can nicely overcome one of the drawbacks of the patch-level supervised learning methods in image denoising; namely, a supervised trained model with a mismatched noise variance can be mostly corrected as long as we have the matched noise variance during the fine-tuning step.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here