Neural Attribute Machines for Program Generation

25 May 2017  ·  Matthew Amodio, Swarat Chaudhuri, Thomas W. Reps ·

Recurrent neural networks have achieved remarkable success at generating sequences with complex structures, thanks to advances that include richer embeddings of input and cures for vanishing gradients. Trained only on sequences from a known grammar, though, they can still struggle to learn rules and constraints of the grammar. Neural Attribute Machines (NAMs) are equipped with a logical machine that represents the underlying grammar, which is used to teach the constraints to the neural machine by (i) augmenting the input sequence, and (ii) optimizing a custom loss function. Unlike traditional RNNs, NAMs are exposed to the grammar, as well as samples from the language of the grammar. During generation, NAMs make significantly fewer violations of the constraints of the underlying grammar than RNNs trained only on samples from the language of the grammar.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here