Neural Capacitance: A New Perspective of Neural Network Selection via Edge Dynamics

11 Jan 2022  ·  Chunheng Jiang, Tejaswini Pedapati, Pin-Yu Chen, Yizhou Sun, Jianxi Gao ·

Efficient model selection for identifying a suitable pre-trained neural network to a downstream task is a fundamental yet challenging task in deep learning. Current practice requires expensive computational costs in model training for performance prediction. In this paper, we propose a novel framework for neural network selection by analyzing the governing dynamics over synaptic connections (edges) during training. Our framework is built on the fact that back-propagation during neural network training is equivalent to the dynamical evolution of synaptic connections. Therefore, a converged neural network is associated with an equilibrium state of a networked system composed of those edges. To this end, we construct a network mapping $\phi$, converting a neural network $G_A$ to a directed line graph $G_B$ that is defined on those edges in $G_A$. Next, we derive a neural capacitance metric $\beta_{\rm eff}$ as a predictive measure universally capturing the generalization capability of $G_A$ on the downstream task using only a handful of early training results. We carried out extensive experiments using 17 popular pre-trained ImageNet models and five benchmark datasets, including CIFAR10, CIFAR100, SVHN, Fashion MNIST and Birds, to evaluate the fine-tuning performance of our framework. Our neural capacitance metric is shown to be a powerful indicator for model selection based only on early training results and is more efficient than state-of-the-art methods.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here