Neural Composition: Learning to Generate from Multiple Models

10 Jul 2020  ·  Denis Filimonov, Ravi Teja Gadde, Ariya Rastrow ·

Decomposing models into multiple components is critically important in many applications such as language modeling (LM) as it enables adapting individual components separately and biasing of some components to the user's personal preferences. Conventionally, contextual and personalized adaptation for language models, are achieved through class-based factorization, which requires class-annotated data, or through biasing to individual phrases which is limited in scale. In this paper, we propose a system that combines model-defined components, by learning when to activate the generation process from each individual component, and how to combine probability distributions from each component, directly from unlabeled text data.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here