Neural Energy Minimization for Molecular Conformation Optimization

This paper studies an important problem in computational chemistry: predicting a molecule's spatial atom arrangements, or a molecular conformation. We propose a neural energy minimization formulation that casts the prediction problem into an unrolled optimization process, where a neural network is parametrized to learn the gradient fields of a conformational energy landscape. Assuming different forms of the underlying potential energy function, we can not only reinterpret and unify many of the existing models but also derive new variants of SE(3)-equivariant neural networks in a principled manner. In our experiments, these new variants show superior performance in molecular conformation optimization comparing to existing SE(3)-equivariant neural networks. Moreover, our energy minimization formulation is also suitable for molecular conformation generation, where we can generate more diverse and accurate conformers comparing to existing baselines.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here