Neural Frank-Wolfe Policy Optimization for Region-of-Interest Intra-Frame Coding with HEVC/H.265

27 Sep 2022  ·  Yung-Han Ho, Chia-Hao Kao, Wen-Hsiao Peng, Ping-Chun Hsieh ·

This paper presents a reinforcement learning (RL) framework that utilizes Frank-Wolfe policy optimization to solve Coding-Tree-Unit (CTU) bit allocation for Region-of-Interest (ROI) intra-frame coding. Most previous RL-based methods employ the single-critic design, where the rewards for distortion minimization and rate regularization are weighted by an empirically chosen hyper-parameter. Recently, the dual-critic design is proposed to update the actor by alternating the rate and distortion critics. However, its convergence is not guaranteed. To address these issues, we introduce Neural Frank-Wolfe Policy Optimization (NFWPO) in formulating the CTU-level bit allocation as an action-constrained RL problem. In this new framework, we exploit a rate critic to predict a feasible set of actions. With this feasible set, a distortion critic is invoked to update the actor to maximize the ROI-weighted image quality subject to a rate constraint. Experimental results produced with x265 confirm the superiority of the proposed method to the other baselines.

PDF Abstract
No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here