Neural Hierarchical Factorization Machines for User's Event Sequence Analysis

31 Dec 2021  ·  Dongbo Xi, Fuzhen Zhuang, Bowen Song, Yongchun Zhu, Shuai Chen, Dan Hong, Tao Chen, Xi Gu, Qing He ·

Many prediction tasks of real-world applications need to model multi-order feature interactions in user's event sequence for better detection performance. However, existing popular solutions usually suffer two key issues: 1) only focusing on feature interactions and failing to capture the sequence influence; 2) only focusing on sequence information, but ignoring internal feature relations of each event, thus failing to extract a better event representation. In this paper, we consider a two-level structure for capturing the hierarchical information over user's event sequence: 1) learning effective feature interactions based event representation; 2) modeling the sequence representation of user's historical events. Experimental results on both industrial and public datasets clearly demonstrate that our model achieves significantly better performance compared with state-of-the-art baselines.

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here