Neural Machine Translation with Source-Side Latent Graph Parsing

This paper presents a novel neural machine translation model which jointly learns translation and source-side latent graph representations of sentences. Unlike existing pipelined approaches using syntactic parsers, our end-to-end model learns a latent graph parser as part of the encoder of an attention-based neural machine translation model, and thus the parser is optimized according to the translation objective... (read more)

PDF Abstract EMNLP 2017 PDF EMNLP 2017 Abstract
No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet